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The linearized initial-value problem for the generation of straight-crested waves in 
a deep, inviscid liquid in response to the prescribed motion of a piston wavemaker 
of finite depth is solved through integral transforms. The indicia1 admittance (the 
surface-wave response t o  a step-function velocity of the wavemaker) is cast in 
similarity form and expressed in terms of confluent hypergeometric functions for 
pure (no surfacc tension) gravity waves. This gravity-wave result, due essentially to  
Roberts (1987), provides an outer approximation for x b 1 and gt2 % 1 (x = horizontal 
distance from wavemaker and 1 = capillary length) but implies an infinite wavc slope 
a t  the contact line (x = 0) in consequence of the neglect of surface tension. The 
corresponding similarity solution for capillary waves (no gravity) with either fixed 
contact angle or fixed contact line is constructed and is found to  be analytic in x for 
t > 0 if the contact angle is fixed or singular like x4 log x if the contact line is fixed. 
An inner approximation for gravity waves with either fixed contact angle or fixed 
contact line is constructed for x = 0(1) and gt2 + 1. The Laplace transform of the 
general solution is expressed in terms of confluent hypergeometric functions, which 
permits a compact discussion of its analytical properties. 

1. Introduction 
Following Roberts (1987) and Joo, Schultz & Messiter (1990), who give references 

to earlier work, I consider the linearized initial-value problem for the generation of 
straight-crested surface waves by a wavemaker a t  the boundary x = 0 of an inviscid 
liquid (x > 0, y < 0). [Peregrine (1972) considers the closely related problem of the 
initial motion of a vertical plate in the reference frame of the plate, but linearization 
dictates a fixed reference frame in the present context.] Roberts neglects capillarity, 
whence his results are singular at the contact line (although he attributes the singular 
behaviour to the neglect of nonlinearity). Joo et al. incorporate capillarity in their 
formulation and show that it relieves the contact-line singularity, but they do not 
undertake a systematic exploration of capillary effects. Capillary effects also have 
been considered by Hocking & Mahdmina (1991) in work that is largely 
complementary to that reported here. 

Capillary effects are comparable with gravitational effects in the wavemaker 
problem if x = O(Z) and dominate them if both x < 1 and t 4 t,, where 

1 G (T/g)i, t, = ( l / g ) f  ( l . l a ,  b )  

are the capillary length and time constant (2.8 mm and 1.7 x s for clean water), 
and T is the kinematic surface tension (the conventional surface tension divided by 
the density). Their incorporation requires that the capillary pressure be included in 
the dynamical free-surface condition and that an appropriate condition be invoked 
a t  the contact line. The linear approximation to  this contact-line condition must be 
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of the form q2 = Kq, where q(x, t )  is the free-surface displacement and K is a linear 
operator (cf. Hocking 1987; Miles 1990); however, K is unknown for transient 
motion, and I consider here only the limiting conditions qx = 0 (K = 0) or q = 0 
(W = a). (Hocking & Mahdmina (1991) posit the contact-line condition qt = Aqx, 
which is equivalent to  K = A-'a,. This is manifestly the simplest plausible 
interpolation between the limiting conditions q x  = 0 and q = 0, but it does not 
comprehend the time lag that (in my view) must be expected to exist between qt and 

Further insight into the respective roles of gravity and capillarity in the present 
context follows from the conversion of the dispersion relation w2 = gk+ Tk3 between 
the (radian) frequency w and the wavenumber k to the dimcnsionless form 

7X.) 

( ~ t , . ) ~  = kZ+ (kZ)3, (1.2) 
and the consideration of its roots in the complex-k plane (in anticipation of the 
subsequent Fourier transformation). It follows from Descartes' rule of signs that 
(1.2) has one positive root and a pair of complex-conjugate roots, which admit the 
approximations 

kZ+ ( ~ t , , ) ~ ,  & i (wt, + 0), (1.3) 

and kZ+ (wt,)g( 1, ebX, e-b.) (wt,  + GO) .  (1.4) 
The real roots in (1.3) and (1.4) correspond, respectively, to gravity and capillary 
waves, the imaginary roots in (1.3) correspond to an exponentially decaying 
disturbance (cf. (1.10)), and the complex-conjugate roots in (1.4) correspond to a 
decaying (in x) oscillation. 

Following Roberts (1987), I suppose that the wavemaker is a piston of depth d . t  
The linearized initial-value problem then is described by 

(1.5) 4 x 2  + $yy = 0 ( x  ' 0, Y < 01, 

$ x =  ''(t) 0 (y p - d ) ,  q2 = cT(t) (x = O),  (1.6u, b )  

$v = Tt3 $ t + g ? /  = Tqxx (Y = 0), (1.7a, b )  

$ , + O  (YJ.--), (1.8) 
and $ly=o = 0, ?/ = 0 ( t  = O ) ,  (1.9a, b)  
where $(q y,t) is the velocity potential, u(t) is the prescribed velocity normal to the 
wavemaker, q(x, t )  is the free-surface displacement, and ~ ( t )  is the wave slope at  the 
contact line. The boundary conditions ( 1 . 6 ~ ~ .  b )  are projected from the displaced 
position of the wavemaker onto x = 0; (1.7u, 6) are projected from thc displaced 
surface y = q o + ~  onto y = 0, where qo is the static displacement (the meniscus) and 
admits the linear approximation 

qo(x) = ~,1~(0)e-*'~. (1.10) 

The solution of (1.5)-(1.9), for which 1 develop an integral representation in $2, 
may be expressed in the form (Duhamel's superposition theorem) 

~ ( x , t )  = a, u( t -7)q1(~,7)d7 = u ( O ) q , ( ~ , t ) +  Zi(7)q1(~,t-7)d7, (1.11) s, s: 
t The solution of (1.5)-( 1.9) for a depth-dependent wavemaker velocity of the separable form 

&(g, t )  = u ( t ) f ( y )  may be determined through a spatial (y) convolution with the present solution. T 
simplify much of the subsequent development hy letting d + 1,  but this is not an essential 
restriction. 
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where ql(x, l ) ,  the indicia1 admittance, is determined by (1.5)-( 1.9) with u(t) therein 
replaced by the step function 

(1.12) 
1 

= ( t  >< 0). 

By definition, u1 is dimensionless, in consequence of which rl is dimensionally a time. 
Moreover, ql may comprise the delta-function 8(t)  and its derivatives in consequence 
of the acceleration zil(t) = d ( t )  implied by (1.12). These singular components do not 
contribute to ql for t > 0, but they may be significant in (1.11). 

It is expedient in many problems to work with the Laplace transform 

g x ,  s) = 2 q ( x ,  t )  = Sqs) T 1 ( X ,  s), (1.13) 

which follows from (1 .11)  through the convolution theorem. For example, the 
steady-state ( t  f co) response to the sinusoidal motion 

u(t) = aw,sinw,t, a(s)  = - 
S 2 + W i ’  

(1.14a, b )  

is determined by the poles a t  s = k iw, in the complex-s plane and is given by 

r ( x , t )  - aw~Re{ifl(x,iw,)exp(iw,t)} ( w a t t  co). (1.15) 

I obtain the exact solution for Tl as a Fourier integral in $2 and in terms of confluent 
hypergeometric functions in $5. 

For pure (T = 0) gravity waves, ql(x,  t )  resembles Lamb’s (1932, $5238-240) 
solution of the Cauchy-Poisson problem and may be cast in similarity form (Roberts 
1987) and expressed in terms of Fresnel integrals or confluent hypergeometric 
functions (which possibility appears to have been overlooked by Roberts (1987) and 
Joo et al. (1990)). This similarity solution, which I develop in $3, provides an outer 
approximation for x 9 1 and t 9 t ,  ; in particular, 

where y = 0.577.. . is Euler’s constant. Note that (1.16) implies qlz = O(2-t)  as x J. 0 
but is not valid in this limit ; nevertheless, it does provide a valid approximation to  
yl a t  x = 0. 

Gravity may be neglected in x 4 1 and t 4 t , ,  and dimensional analysis then implies 
a similarity form of rl for capillary waves. I construct this solution in $ 4  and find that 

where the subscript a/b  signifies that  the contact angle/line is fixed (ql,/ql = 0 a t  
x = O),  and $ is the logarithmic derivative of the gamma function. 

Neither the gravity-wave nor the capillary-wave similarity solution provides an 
adequate description of q l (x , t )  in 2 = O(1). I n  $6 and Appendix B, I consider the 
domain x = O(Z) and 1 3 gt2 4 d and obtain the inner approximations (cf. (1.17) and 

(1.19) 
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and (1.20) 

I make frequent reference to Abramowitz & Stegun (1964) through the prefix AS, 
followed by the appropriate equation number therein. 

2. Transform solution 

respect to  x and Laplace transformation with respect to t. Introducing 
We attack the initial-value problem through Fourier-cosine transformation with 

f ( ~ ) c o s k x d x ~ 9 f ,  F ( k ) c o s k x d k ~ F - ' F ,  ( 2 . l ~ , b )  

A s )  = /om ePstf(t) dt = 9 f ,  f ( t )  = estf(s) ds G Y-lf (c > 0) ,  

(2.2a, b)  
and transforming (1.5)-( 1.9), we obtain 

6u = sN, . d + ( g + T k 2 ) N =  -T@ (Y = O ) ,  (2.4a, b)  

and q - , 0  (yJ.--oo), (2.5) 
where 6 = 9%q5 and N = 99~. The solution of (2.3)-(2.5) is given by 

1 - ePkd cosh ky 
ekv sinh kd 

) + k-l&eku (y 3 - d ) ,  
- 

@ = -k-Za 

and N =  ( s ~ + w ~ ) - ~ [ s ~ z ~ - ' ( ~  -e-kd)-T@k] ( w 2  = gk+Tk", (2.7) 
where 8 is to be determined through the imposition of the appropriate contact-line 
condition. 

We define yl(x, t )  as the response to the step-function velocity (1.12), for which 

2.1. Fixed contact angle (u = 0) 
Setting a, = 0 (which we signify by the subscript a)  in (2.8d) and inverting, we obtain 

(2.9a, b)  

We remark that ylazz for d = co is the solution of the two-dimensional Cauchy- 
Poisson problem for capillary-gravity waves (Lamb 1932, $269; Rayleigh 191 1) and 
that the asymptotic behaviour of qla for x / l  > 1.09t/t, % 1 (l.092/tc is the minimum 
value of the group velocity) may be determined by the method of stationary phase. 

The Fourier integral (2.9 b)  may be expanded in powers of t  for x > 0 by expanding 
w-l sin wt in powers of t  and k and inverting term by term, but the result diverges a t  
x = 0 and therefore is of limited interest in the present context. 
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2.2. Fixed contact line 
The assumption of a fixed contact line, 7 = 0 at x = 0, yields, through (2.1 b) and 
( 2 . W ,  

(2.10) 

for the determination of 
r m  

The Laplace transform of the corresponding indicia1 admittance (to which we append 
the subscript b to  signify a fixed contact line) is given by 

cos kx dk 
K s2 + u2 

= (1 + Ta,(s) lim a:} qla(x, s), 
d t m  

(2.12 a) 

(2.12 b) 

wherein ff1,(x, s) is given by ( 2 . 9 ~ ) .  The inverse transform of (2.12 b) may be expressed 
as a convolution integral, but it is typically necessary to approximate #,(s) prior to 
inversion. 

3. Gravity-wave similarity solution (5” = 0) 
Setting w = (gk)i and introducing 8 = (gk)it, we transform (2.9b) t o t  

where 
sin 8 

(1-exp(iXB2)-d8, 
8 2  

Y ( X )  = 42exp ( -+iKZ2) [ G ( Z )  + is(Z)] (3.3a) 
= 4Z2M(1, i, -!$nZ2), 2 = (27rX)-i, (3.3 b, c) 

C and 8 are Fresnel integrals, M is a confluent hypergeometric function, (3.3b) 
follows from ( 3 . 3 ~ )  through AS 7.3.25, Y(0) = 0 by construction, and (see Appendix 
4 

Y(X) - (2/~)[1n(-iX)+2-y] (X+co) ,  (3.4) 
where y = 0.577.. . is Euler’s constant. Invoking AS 13.1.2 or AS 13.5.1 and 
integrating with respect t o  X, subject to Y(0) = 0 and (3.4), respectively, we obtain 
the expansions (cf. Roberts 1987, Appendix B) 

t The boundary condition (1.6b) on 7, at x = 0 must be relaxed, and T@ is absent from (2.9a), 
for T = 0, but llz then is singular at x = 0,  and the subscript a would be inappropriate in (3.1). 
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and 

It follows from (3.1), (3.5) and (3.6) and the restrictions z B l and t B t, implicit in 
the neglect of surface tension that 

and 

in agreement with Roberts (1987). 

4. Capillary-wave similarity solution (g = 0) 
4.1. Fixed contact angle 

Letting g = O(w2 = Tk3) and introducing 8 = (Tk3)& in (2.9b), we place the result in 
the form (cf. (3.1)) 

where 

~ ~ ~ ( x , t )  = tRe{V(X+iD)-%(X)} 
X X=- 

( Tt2)i ’ 

sin 0 [l -exp (iZ&)]-d8. 
e2 

d D = -  
(Tt2)i’ 

(4.la-c) 

We obtain the Maclaurin expansion of “(2) by deforming the path of integration 
for the exp ( f i e )  component of sin 8 in (4.2) to (0, & im)  in a complex-8 plane cut 
along ( - oc), 0) ,  expanding exp (iZ&) in a power series, and integrating term-by-term. 
The end result is 4 O‘ r ( ~ - l ) c o s ( ~ R )  

“ (2)  = - (iZ)n. 
3x n=1 n !  (4.3) 

Letting Z + 00 in (4.2) and approximating the integral as in Appendix A, we obtain 
the asymptote (cf. (3.4)) 

V(Z) - (2/x)[ln (-iZ)+i(y+2)] (Z+ a). (4.4) 
To complete the asymptotic expansion of %? for Im Z > 0, we introduce K = 6 in (4.2), 
differentiate with respect to 2, expand d s i n  K: in powers of K ~ ,  and integrate term- 
by-term to obtain 

the integration of which, subject to (4.4), yields 

If Z = X is real the asymptotic expansion comprises the additional contribution 

from the point of stationary phase a t  0 = (gJ)3. 
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The physical domain of principal interest is X = O(1) and D 9 1, in which 
%(X+iD)  and %(X) in (4.1) may be approximated by (4.4) and (4.3), respectively, to 
obtain 

} ( O < X < D )  
- 1) cos (inn) X 2 n  31nD+y+2-2 

3 R  n=1 (2n)  ! 

1 X 2  

( Tt2)r 
+ y +  2-;T(f)-+ ... ( O < x 3 < T t 2 < d 3 ) .  (4.8b) 

4.2. Fixed contact line 
Letting w2 = Tk3 and d3s2/T+ co in (2.11), we obtain 

3; 
a,($) N - ( T s 4 ) 4  

2R (4.9) 

and cr l ( t )  - 3 2 q g )  ( L r b n  T + 2+($) + 3y] (g 4 01, (4.10) 

where + is the logarithmic derivative of the gamma function. Combining (4.9) with 
the Laplace transform of (4.8a), 

(4.11) 1 2 s-' s' SX 
, 

in (2.12b), we obtain 

vl* = @,(s)x-  [y+ln ~ T - G )  + -1 2 a x2 + . . . , 
3 d 3  ( T S ) ~  

the inversion of which yields 

{ 3'x [31nD+2$($)+3y 1 V l b ( X , t )  = - - 
3 R  2r(9 

-"[ 3 lnD+ 2$(;) + 3y + 0(X4 1nD 1nX) r(f) 

(4.12) 

where X and D are defined by (4.1 b, c). 

5. The Laplace transform ql 

We now introduce the dimensionless variables 
5.1. Partial-fraction Fourier inversion 

where 1 and t ,  are defined by (1.1 ), and transform ( 2 . 9 ~ )  to 
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The Fourier integral ( 5 . 2 ~ )  may be reduced to  exponential integrals and their 
relatives through the partial-fraction expansion 

- 1 = xun(A--), 1 a, = 1 
D(R) n R A+& R,( 1 + 3R3 ' 

(5.3u, b)  

where the summation is over the three roots of (cf. (1.2)) 

A,(R; + 1) = a' ( n  = 1,2,3).  (5.4) 
We note the limiting approximations (cf. (1.3) and (1.4)) 

~ , , ~ , ~ + a ~ ,  + i  (a+.), ~ ~ , ~ , ~ - ~ l i ( 1 , e + ~ ~ ~ / 3  1 (a+O0)* (5.5u, b )  
Substituting ( 5 . 3 ~ )  into ( 5 . 2 ~ )  and invoking 

and (5.7) 

where, here and subsequently, the sum of the two terms with alternative signs is 
implicit (A, may be complex, so that this sum is not necessarily real), and El is the 
exponential integral (AS 5.1 .l), we obtain 

where G(z) = y + In z + eZEl(z) (larg zI < K) (5-9) 
is the function introduced by Roberts (1987). 

A similar calculation of the dimensionless counterparts of (2.11) and (2.12) yields 

(5.10~) S1(a) = g@,(s) = +KZ,-, ,(O, d)/L2(d),  

where (5.10b) 

and Zlb(z, 6) = Z ~ - , , ( z , ~ ) + ~ - ~ ~ ~ ( a ) ~ a , 1 & 2 , G ( + i r & , c c ) .  (5.1 1) 

5.2. The function G(z) 
G ( z )  is analytic in a complex-z plane cut along the negative real axis. Invoking the 
confluent-hypergeometric-function identity (from AS 13.1.6, 13.6.12, 13.6.30) 

n 

(5.12) 

where $ is the logarithmic derivative of the gamma function, we obtain the 
representations 

m 

(5.13) 

m 

and G(z) - y + l n z +  C (-)mm!z-m-l ( z - t  00, largzl < &). (5.14) 
m-0 

The arguments of G in (5.8) are not confined to  ( -  K, K), whence we require the 

( 5 . 1 5 ~ )  

analytical continuations 
G(zeZimn) = G(z)+2imn(l-eZ) (largzl < n,m = 1 1 ,  1 2 ,  ...) 
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(5.15b) G(x ekirr) = y + In x - c? Ei (x) k i7c( 1 -ePz), 

where x is positive real and Ei(x) is defined by AS 5.1.2. The corresponding 
continuations of (5.13), but not (5.14), may be obtained by choosing lnz = lnlzl+ 
i arg 2 for all arg x .  

5.3. Hurwumic motion 
The free-surface displacement for the harmonic motion (1.14) is given by (1.15), 
which requires the evaluation of $fl a t  s = iw,(o = iw,t,). The cubic equation (5.4) 
then admits a real root A, and a pair of complex-conjugate roots, k2,3,  for which 

(d = ootcetin). (5.16a, b )  

Thc corresponding arguments of A , , , ( d f i x )  and A l ( d - i x )  lie in (-n,7c) for all d, 
x > 0, but a rgk , (d+iz)  and arg(i4,x) lie in (7cC,~7c], and ( 5 . 1 5 ~ )  implies 

G[R,(d+itc)] = G[exp(-in)A,(d+ix)]+2i7c[1-exp(-A0(d+iz))]. (5.17) 

A, = IAllein = A , eirr , in < argA, = -argA, < i7c 

Substituting (5.16) and (5.17) into (5.8) and invoking (5.3b) for a,, we obtain 

- - 2i[l -exp ( -do d)] 
~ J z ,  iw, t , )  = Alu*(x, iw, t,) - exp ( -id, z), (5.18) A,( 1 + 3 4 )  

where Zlu* is the principal value of Zlu and is O(Z-~)  as x 1' 00, while the last term in 
(5.18) represents the radiated wave. Restoring dimensions and invoking (1.2) for 
o = wo(k,) and (1.15), we obtain [cf. Hocking & Mahdmina (1991) with A = 00 

therein] 

It can be shown that (5.18) and (5.19) are consistent with Havelock's (1929) results 
for a pure gravity wave, for which k, = w:/g and the terms for n = 2,3  are omitted 
from Zlu*. 

The counterpart of (5.19) for a fixed contact line is 

i 1+k:Z2 y lb (x ,  t) - 2a (~ + 3kt lp) Re { [ 1 - exp ( - k, d )  - ki 123.,(io, t,)l exp Muo t - k, x -&)I , 

(5.20) 
where 3, is given by (5.10). Anticipating (6.6), we obtain 

vlb(x,t) - k,Z[(y+lnk,d)sin (w,t-k,x) 

+ ~ c 0 ~ ( ~ , t - k , ~ ) ] + O ( k ~ 1 ~ ,  k;Z4d-l) , (5.21) I 
which is a limiting case of Hocking & Mahdmina's (1991) result. 

6. The inner domain for gravity waves: x = O(Z), t % t,  

-g 1 in 
largal < $I (Doetsch 1943), in which domain the substitution of ( 5 . 5 ~ )  into (5.3b) and 
(5.8) yields 

d l a (x ,  a)  = d-2{G[~2(d+ix)]-G( +i~2x)}+Re{iG[i(dfix)]- iG(xein)}+O(2) ,  

The behaviour of ql for t 3- t,  depends on the behaviour of Zl for 

(6.1) 
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where O(crm), m ?= 0, implicitly comprises O(a"1na). The +dependent terms in (6.1), 
which represent the contributions of the poles of the Fourier transform a t  R = 
-& = T 1,  do not contribute to vlU for t > 0, but they are significant for the fixed- 
contact-line problem (see below). 

Substituting (5.13) into (6. l ) ,  inverting, and restoring dimensions, we obtain qla,  
within an error factor of 1 + 0(12/g2t4), in the form (3.1) with '3 given by 

4 (2rn)!(-X),+' 
x,,, ( m + l ) !  ' '3m - - 2 

which is identical with the first series in (3.5). The absence of the second series in (3.5) 
from the present approximation reflects the fact that the approximation (5.5a) and 
the representation (6.1) have not been invoked for large s, where capillarity ensures 
the exponential vanishing of exp ( s t )  ~ ~ ~ ( 5 ,  s) as s + 00 in Re s < 0 (which would not 
be so for the approximation (6.1) (cf. Roberts 1987, Appendix B)). 

We simplify the further development by assuming d % 1, x 4 d ,  and 1 4 gt2 Q d,  in 
which domain we may approximate dk iz  by d, G ( a 2 d )  by y+ln  (2d), and G ( i d )  
by y+lnd+$in  and represent G(+icr2z) and G(zei") by (5.13) and (5.15b), 
respectively, to obtain 

2 Zlu(z, a )  - -a-2[y+h ( d 2 ) ] - ~ - - e - ~ + O ( 2  In 2z,  d-'a4). (6.3) x 
Inverting (6.3) and restoring dimensions, we obtain (cf. (3.7)) 

Turning to the fixed-contact-line problem, we invoke (5.3b) and ( 5 . 5 ~ ~ )  in (5.10b) 
to obtain 

which may be combined with (6.3) in (5.10a) to obtain 
L , ( d )  = in+ O ( 2  In a), (6.5) 

2 
&l(a) = ; "-*[y + In (da2)] + 0 (In 9). (6.6) 

Combining the dimensional counterparts of (6.3) and (6.6) in (2.12b) and inverting, 
we obtain (cf. (6.4)) 

(x 4 gt2, 14 gt2 4 4. 

Higher approximations are obtained in Appendix B, where it is shown that vla is 
analytic in x for fixed t ,  but that y l b  is singular like O(x41nx) as x+O. 

This work was supported in part by the Division of Mathematical Sciences/Applied 
Mathematics programs of the National Science Foundation, NSF Grant DMS 89- 
08297, and by the DARPA Univ. Res. Init. under Appl. and Comp. Math. Program 
Contract N00014-86-K-0758 administered by the Office of Naval Research. 

Appendix A. Asymptotic approximation to g ( X )  
We seek the asymptote of 

sin 8 
02 

(1-exp(iX02)-d0, 
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as X+ 00. Dividing the range of integration into (0,8,) and (8,, a), where X-i 4 
8, 4 1, and invoking 

I, = 2 ~ ( l - e x p ( i X B 2 ) ) - d 8 - 2  sin e2 e (1 - ex; (ixe)) d6 

=Ein(-iX8~)--y+ln(-iX)+2ln8,,  (A2)  

where Ein is the modified exponential integral defined in footnote 3 of AS $5.1, and 

= 2r*-Ci(O1)] N 2(1--y-h8,), (A3)  4 
0 0 

Appendix B. The expansion about x = 0 
We now assume x = O( 1) and d % 1, in which domain d & ix  may be approximated 

by d in (5.8) and G(R,d )  and G(fiA,z) represented by (5.14) and (5.13), 
respectively, to obtain 

where 
m 

$~Z,,,(o,a) = I fo(a)(y+lnd)+LO(a)+ x (-)m-l(m-l)!K-m(d)d-m, (B 2) 
m-1 

K,(LI) = xa,R;, Lm(a) = CanAFInI&,. (B 3a, b)  
n n 

The corresponding approximation to & ( z , G )  is given by (5.10) and (5.11). 
It follows directly from (5.2b), which implies D - R4 as R+ m, and (5 .3~)  that 

KO =a-z, K, = o ,  K, = o ,  If, = 1, (B 4a-d) 

while (5.4) implies the recursion equation 

If,+,+K,+, =arn, (m = f l ,  *2, ...). (B 5) 
The solution of (B 5), subject to (B 4), is given by 

(-)m-11f2m = [m-2]a2-&m[m-5][m-4]2as+ ... (m = 1,2, ...), (B 6 a )  

(-y-lKzm+, = l-;[m-3][m-2]a4+... (m = 1,2 ,... ), (B 6 b )  
and 

K-, = ~-2m-2{1  + [m-2] a4 + i [m-  51 [m-4] as+ .  . .} (m = 0,1, . . .), (B 6 ~ )  
where [ m ] = m  ( m > 0 ) ,  [ m ] = O  ( m G 0 ) .  (B 7% b )  
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It follows from (B 612, b )  that the inverse transforms of the corresponding terms in 
(B 1) vanish for t > O t  and hence that the 2-dependent component of Zla is derived 
entirely from the series in E2m z ~ ~ ,  which is analytic in Z. 

Substituting (B 6) into (B 2 )  and invoking d B 1 (but 0 2 d  may be O(1),  we obtain 

L m-1 J 

where, here and subsequently: the terms in &"(m 2 1) are multiplied by an implicit 
error factor of 1 + 

Tractable approximations to Lm(a) appear to require expansions about either il = 
0 or a = CO, starting from either ( 5 . 5 ~ )  or (5 .5h) ,  which yield 

zm = 2i12(2m-1) [ I  - 2 ( r n +  1 )  04+ O(il*)] In il+ ( -)m-'($r+$?) 
-d2(2m+1)+O(a4) (s+O) (B 9 u )  

(B 9 b )  
4R 
9 

L,, = ~ 2 m l n a + - s i n ( ~ ~ ) i 1 2 m / 3 + ~ ( ~ f m - ~ )  (il+oo). and 

The latter approximation leads to results that are equivalent to those of $4 through 
O(z4)  in the limit t & 0 and need not be considered further. Substituting (B 9a)  into 
(B 1) and (B S),  inverting, and restoring dimensions, we obtain 

which is analytic in x. 

to  obtain 
Turning to the fixed-contact-line problem, we combinc (R  8) and (B Ya) in ( 5 . 1 0 ~ )  

z + x ( - r " - ' ( m - l ) ! ( i 1 2 d ) - " ] .  (B 1 2 )  
m-1 

the inversion of which, followed by the restoration of dimensions, yields 

t But non-negative, integral powers of s in may be significant for the inversion of su?jl ~ in 
particular, if u = O ( t p ) ?  p 2 1 .  as t 4 0. See Lighthill (1959) for the inversion of terms like .s" and s "  
logs for n 2 0. 
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The corresponding approximation to qIb may be calculated through either (2.12b) or 
(5.11). Approximations of higher order than (6.7) are complicated, but it is worth 
emphasizing that qlb is singular at O(z41nz) as x 40 (cf. (4.13)). 
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